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Abstract. This paper presents a novel approach for recovering the shape
of non-Lambertian, multicolored objects using two input images. We
show that a ring light source with complementary colored lights has the
potential to be effectively utilized for this purpose. Under this lighting,
the brightness of an object surface varies with respect to different reflec-
tions. Therefore, analyzing how brightness is modulated by illumination
color gives us distinct cues to recover shape. Moreover, the use of com-
plementary colored illumination enables the color photometric stereo to
be applicable to multicolored surfaces. Here, we propose a color correc-
tion method based on the addition principle of complementary colors to
remove the effect of illumination from the observed color. This allows the
inclusion of surfaces with any number of chromaticities. Therefore, our
method offers significant advantages over previous methods, which often
assume constant object albedo and Lambertian reflectance. To the best
of our knowledge, this is the first attempt to employ complementary
colors on a ring light source to compute shape while considering both
non-Lambertian reflection and spatially varying albedo. To show the ef-
ficacy of our method, we present results on synthetic and real world
images and compare against photometric stereo methods elsewhere in
the literature.

1 Introduction

Reconstructing 3D shape from multiple images has attracted ample attention
from the computer vision community. Along these lines, one of the most popular
approaches is photometric stereo (PS) [1], which reconstructs the object shape by
varying the light direction across multiple images that share the same viewpoint.
By assuming Lambertian reflectance and using calibrated lights, PS can recover
the object shape and spatially varying albedo making use of three images.

On the other hand, color PS [2–4] augments conventional PS with the idea of
multiplexing in the spectral domain. Rather than using three grayscale images,
the method uses a single color image of a Lambertian surface being illuminated
by three different colored lights. This allows for its application to the reconstruc-
tion of deformable surfaces [5, 6]. However, in general, color PS approaches [2–4,
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Fig. 1. Observed brightness under two complementary colored lights, (a) White colored
object; (b) Non-white colored object.

7, 5] often assume constant object albedo and Lambertian reflectance. These
assumptions can be overly restrictive in practice.

The aim of this paper is to extend color PS for non-Lambertian, multicol-
ored surfaces. Here, we show that a ring light source with complementary colored
lights has the potential to be effectively utilized for this purpose. The key obser-
vation is that, under a complementary colored light source, the observed color
of an object surface varies with respect to different reflections (shown in Fig. 1).
Therefore, analyzing how object color is modulated by illumination color gives
us clues to estimate surface orientations. On top of that, the complementary
colored illumination also allows the inclusion of multicolored surfaces in shape
estimation. To deal with such surfaces, we propose a color correction method
that exploits the addition principle of complementary colors to remove the effect
of illumination from the observed color. This eases the estimation of object color
and makes the method applicable to any number of chromaticities.

There have been a few approaches that consider scenes with varying chro-
maticity by either employing time multiplexing [8, 9], applying regularization to
the normal field [10], using extra information provided by a depth camera [11],
or a two camera stereo system [6]. However, our approach has significant advan-
tages over the previous approaches as we can deal with shadows and specular
highlights which are almost unavoidable phenomena in the real world.

It is worth noting in passing that our work has been partially motivated
by the work in [12], where the same light configuration is utilized for depth
edge extraction based on shadow cue. However, our approach differs from this
work in that, we employ a colored ring light for 3D shape reconstruction, not
for depth edge, and we utilize shading, shadow, and specularity cues altogether.
Our method is effective and requires only two input images taken under com-
plementary colored lights.To the best of our knowledge, this is the first attempt
that utilizes a complementary colored ring light for 3D reconstruction. The con-
tributions of our paper are:
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– We propose a new approach of color PS for non-Lambertian surfaces that uti-
lizes the variation in observed surface color according to different reflections
under complementary colored illumination.

– We present a color correction method based on the addition principle of
complementary colors to render color PS applicable to multicolored surfaces.

– We show that the color difference between images under complementary
illumination is useful for detecting diffuse, specular, and attached shadow
reflections.

The rest of the paper is organized as follows. In Section 2, we summarize
earlier research in PS for non-Lambertian, multicolored surfaces. In Section 3,
we explain brightness variation under complementary illumination in different
reflections, that we employ in Section 4 to develop theories to estimate shape.
Experimental results and comparisons are presented in Section 5. Finally, in
Section 6, we conclude on the developments presented here.

2 Related Work

Most of the surfaces around us are non-Lambertian. Conventional PS can not
reliably reconstruct those, especially when deviation from the Lambertian as-
sumption is large. Therefore, since the seminal work of Woodham [1], PS has
received significant efforts to incorporate non-Lambertian phenomena. The ex-
isting approaches in this direction can be categorized into three broad classes.

The first approach is to model non-Lambertian surfaces using parametric
models that are more complex than the Lambertian, e.g. Georghiades [13] uses
a simplified Torrance-Sparrow (TS) model [14] to account for specular highlights
but discards shadows as outliers; Goldman et al. [15] employ the Ward model
[16] to include both shadow and highlights, but require more user inputs.

The second group [17, 18] assumes that the non-Lambertian phenomena, such
as shadows and highlights, are restricted to small regions of an image. As a result,
these can be treated as outliers and hence, removed from further consideration.

The third and more recent approach is to exploit general properties rather
than assuming any specific reflectance model, e.g., radiance similarity [19], at-
tached shadow codes [20], monotonicity and isotropy in diffuse reflectance [21],
isotropy and reciprocity [22–24], reflectance monotonicity [25], and so on. How-
ever, approaches in the latter two categories use a large number of observations.
Our method belongs to the first category as we utilize the TS model to include
non-Lambertian surfaces. However, our method is a color PS approach and our
novelty is that we exploit the potential of complementary colored illumination
to extend the applicability of PS to non-Lambertian cases.

Apart from the non-Lambertian cases, we also develop a theory to incorporate
multicolored surfaces, which is often ignored in color PS. It is known that given
an image of a surface of uniform chromaticity, illuminated by three spectrally
and spatially separated light sources, it is possible to estimate a surface normal
at each pixel [2]. However, this is no longer possible for surfaces with multiple
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chromaticities as a change in pixel color could be caused by either a change
in surface orientation or a change in chromaticity. Therefore, most of the color
PS algorithms [2–4, 7, 26, 5] are applicable to uniform colored surfaces. However,
there are also a few works that consider scenes with varying chromaticity.

In [6, 11], Anderson et al. assume a scene to be comprised of multiple piece-
wise constant chromaticity. To render the problem tractable, they segment the
input image into regions of constant chromaticity before applying PS to estimate
shape. To perform the segmentation, they require low resolution geometry of the
scene provided by either a two-camera stereo system [6] or a depth camera [11].

In another approach, Janko et al. [10] apply color PS to estimate the shape of
a dynamic and multicolored surface. To separate the contribution of surface ori-
entation from that of albedo in observed color, the method exploits a constraint
based on the temporal constancy in surface albedo. However, their method has
two major drawbacks. Firstly, it enforces spatial smoothness on the surface nor-
mal over neighboring pixels, which, in turn, can cause over smoothing of fine
shape details. Secondly, to estimate albedo, their method requires the surface to
be dynamic enough and the input sequence to be long enough so that all normals
turn towards each light source at least once.

Decker et al. [8] and Kim et al. [9] resort to time multiplexing to relax the
assumption of constant chromaticity and apply color PS for dynamic scenes.
The method in [9] accounts for time varying surface orientation and requires
three images to recover shape at each frame. On the other hand, the method
in [8] assumes surface normal to be constant across the frames and requires at
least 2 input images to estimate shape. The method in [8], like ours, also utilizes
complementary colored light to estimate object albedo.

However, all these color PS methods, including that in [8], assume Lam-
bertian reflectance. In a related development, Hernández et al. [26] considers
shadows by applying an integrability constraint, but limit their attention to
monochromatic surfaces and disregards specular highlights.

Like ours, there have been several other PS approaches [22, 23, 27, 24], that
utilize the ring light setup. However, all these methods assume monochromatic
lights and require a large number of input images. For example, the work in [22]
requires 20-30 images to recover only partial reconstruction of isotropic surfaces
and [23] requires much more (about 100). Zhou and Tan [27] recover Euclidean
structure for multicolored, Lambertian surfaces using at least 5 images and 2
views. Based on a ring light setup and reflectance symmetry, Tan et al. [24] also
recover Euclidean structure by extending the partial reconstruction developed in
[22]. However, their method depends on the algorithm in [22] to compute the iso-
depth contours and, therefore, requires a large number of images. This contrasts
with our method, which only requires two images captured from a single view.

3 Brightness under Complementary Colors

This section describes our observations on brightness under complementary il-
lumination, that we will utilize later to develop our theory for recovering shape.
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Under a ring of colored lights, the observed color of an object includes not
only surface color but also illumination color. Analyzing how object color is
modulated by illumination color gives us clues to estimate surface orientations.
Let us first consider the simple case depicted in the left-hand panel of Fig. 1,
where the target object has a neutral (white) color and is illuminated by two
lights with complementary hues, red and blue-green.

This complementary light configuration provides significant information for
each of the diffuse, specular, and attached shadow reflections:

– Diffuse: Depending on the surface orientation, brightness in diffuse pixels
can be of two types, non-white shaded and white shaded. As shown in Fig.
1(a), when the surface normal is tilted towards one of the light sources, we
see the shade of that particular light. On the other hand, when the surface
normal is not biased towards any specific light source, both lights contribute
the same. As the mixture of complementary colors in an additive color space
results in white, these pixels appear white.

– Specular: It is well known that specularity is the mirror-like reflection of
light observed when the direction of the incoming light and reflected light
have equal angles with respect to the surface normal. In the case of a color
ring light, the color of specular reflection depends on the surface orientation.
For instance, in Fig. 1(a), we see red specularity at points where its mirror
reflection is oriented towards the red light source.

– Shadow: Attached shadow appears in a pixel when the angle between the
surface normal at that point and a light source is more than 90◦. In this
case, the surface does not receive any light from this light source and the
pixel is colorized according to the contribution from the other light source
with which the incident angle is less than 90◦.

The discussion above can be extended to a continuous ring light that is formed
as a maximally saturated complementary hue circle with same brightness. Under
this light, we experience similar observations. As for diffuse reflection, the white
shade appears when the surface normal is toward the camera and thus receives an
equal amount of light from all lights on the ring. On the other hand, a nonwhite
shade appears when the surface normal is tilted towards a specific light on the
ring. In such cases, it is colored according to a weighted average of all light colors,
where that particular light weights more than the rest. 1

As for specular reflection, each specular pixel exhibits the color of a specific
light on the ring when its mirror reflection is oriented towards that light. As
already seen in the case of two lights, a shadow pixel is colorized according to
the contributions from the visible light sources.

Note, however, that the scenario becomes more complex when the target ob-
ject has a non-white surface color. As shown in the right-hand panel of Fig. 1,
the shading and shadow are now a product of both, the illuminant and object

1 This follows Newton’s geometrical weighting [28], which states that the additive mix-
ture of any number of colors is determined as the weighted average of the positions
of the original colors on the hue-saturation plane.



6 S. Rahman et al.

Fig. 2. Left-hand panel: illumination geometry for our colored ring light setup. Right-
hand panel: a diagrammatic representation of our method.

color, whereas pure specular pixels show the illumination color. From the figure,
we can understand that the separation of the illumination color from the object
color becomes a challenging task. Later, in Section 4.1, we show how comple-
mentary illumination can be used to perform color correction. This delivers an
image where the object color has been effectively canceled out.

4 Shape from Complementary Colors

We start from the assumption of directional illumination and orthographic pro-
jection. We consider a ring light setup where the observer is fixed at direction
v. The global coordinate system is selected such that the Z-axis is aligned with
the viewer direction, i.e., v = (0, 0, 1)T . We assume that the scene is being il-
luminated by a ring light source, where the lights are arranged in equidistance
on a cone centered at the viewing direction (see left-hand panel of Fig. 2). We
further assume that our coordinate system is aligned with the HSV space and
select colors on the ring such that the colors form a complementary hue circle.
Our assumptions on scene properties are: no cast shadows in the scene, uniform
roughness over the surface, and brightness distribution is Gaussian.

The right-hand panel of Fig. 2 shows a diagrammatic representation of our
method, where our algorithm uses two input images and computes their sum to
obtain the object color. Once the surface color is in hand, a pair of color-corrected
images is recovered for purposes of color PS.

Next we consider the cases where objects are composed of multicolored diffuse
surfaces in Section 4.1, specular surfaces in Section 4.2, and surfaces with both
colored diffuse and specular reflections in Section 4.3.

4.1 Multicolored Diffuse Reflection

Let us assume that the scene is being illuminated by a ring-light source made
up of k lights, i.e., L = {L1, ...., Lk}, each with a different hue from the set of
hues, H = {H1, ....,Hk}. Now, if we capture an input image M1 under H, the
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color of each channel c ∈ {R,G,B} for each diffuse pixel u, is in fact a linear
combination of contribution from all the light sources, given as,

M1,c =

k∑
i=1

(Li ·N)

∫
ρ(λ)Pi(λ)Qc(λ)dλ (1)

where, the contribution of the i-th light source with power spectrum Pi(λ) is in-
tegrated over the visible spectrum (380nm to 720nm). Qc(λ) = {r̄(λ), ḡ(λ), b̄(λ)}
is the camera spectral sensitivity function. N and ρ(λ) denote surface normal
and diffuse spectral reflectance at pixel u, respectively.

For the time being, let us assume that the surface is white and therefore
has a constant spectral reflectance τ over all wavelengths. Following the scalar
multiplication property and distributive law of dot products, we rewrite Eq. (1)
as,

M1,c = τ
( k∑
i=1

(Liqi(c))
)
·N (2)

where qi(c) =
∫
Pi(λ)Qc(λ)dλ. From Eq. (2), we can solve for surface normal

as, N = A−1b, where A =
k∑
i=1

Liqi(c) and b = [M1,c]. Thus our system of linear

equations comprises of 3 equations to solve for 3 unknowns. Note that, we drop
the term τ from our solution and assume that the surface normals are scaled by
τ . This assumption is not exclusive to our method but rather common across
other PS approaches [29].

To deal with nonwhite or multicolored surfaces, next we propose a color cor-
rection method that removes the contribution of object color to image brightness.
For this, we need a second input image M2, that we capture under the comple-
mentary set of H, denoted by H̄ = {H̄1, ...., H̄k}. The image brightness equation
for M2 is given by,

M2,c =

k∑
i=1

(Li ·N)

∫
ρ(λ)P̄i(λ)Qc(λ)dλ (3)

Note that, everything remains the same as in Eq. (1) except power spectrum
of the i-th light P̄i(λ) now corresponds to H̄i, i.e., the complementary hue of Hi.

Now if we add M1 and M2, this results in an image showing only object color
devoid of illumination color, as (Pi(λ) + P̄i(λ)) is equivalent to unity, 2

M1,c +M2,c =

k∑
i=1

(Li ·N)
(∫

ρ(λ)Pi(λ)Qc(λ)dλ+

∫
ρ(λ)P̄i(λ)Qc(λ)dλ

)
2 We note that in practice, (Pi(λ) + P̄i(λ)) do not always perfectly sum to 1 at each

wavelength. Despite this, since we ultimately examine RGB values in our method
and not individual wavelengths, we found the amount of error introduced did not
adversely affect our algorithm.
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=

k∑
i=1

(Li ·N)

(∫
ρ(λ)

(
Pi(λ) + P̄i(λ)

)
Qc(λ)dλ

)

=

k∑
i=1

(Li ·N)

(∫
ρ(λ)Qc(λ)dλ

)
(4)

Now, if we assume that we have the complementary spectrum of ρ(λ), we
can generate a new image M̄1 whose equation in the RGB space is given by,

M̄1,c =

k∑
i=1

(Li ·N)

∫
ρ̄(λ)Pi(λ)Qc(λ)dλ (5)

where, in contrast to Eq. (1), ρ is now replaced by ρ̄, which denotes the comple-
mentary spectrum of object color.

In practice, we use an RGB camera and do not have the complementary spec-
trum, so we utilize the HSV space to generate M̄1. As the hue of M1 +M2 corre-
sponds only to the object hue in the HSV space, we use this to compute the com-
plementary hue of the object as, ¯objhue = mod(objhue + 0.5, 1) where the object
hue is normalized to [0, 1]. Then we generate an image ( ¯obj)HSV , that shows only
complementary object color, by changing the hue value of (M1 +M2)HSV from
objhue to ¯objhue, keeping saturation and brightness unchanged. Now, adding
(M1)RGB to ( ¯obj)RGB results in only illumination color. Let’s denote it by
(light)RGB . As M̄1 is composed of complementary object and illumination color
(Eq. (5)), therefore, we get (M̄1)RGB = ( ¯obj)RGB + (light)RGB .

Now adding M̄1 to M1, the term (ρ(λ) + ρ̄(λ)) becomes unity, thus resulting
in a brightness equation without the diffuse spectral reflectance term. This is
given by,

M
′

1,c = M1,c + M̄1,c =

k∑
i=1

(Li ·N)

(∫ (
ρ(λ) + ρ̄(λ)

)
Pi(λ)Qc(λ)dλ

)
=

k∑
i=1

(Li ·N)

(∫
Pi(λ)Qc(λ)dλ

)
(6)

We name the image M
′

1 as the color corrected image of M1. Now with the
color corrected image, we can use the solution presented earlier for white colored
surfaces to multicolored surfaces without any loss of generality.

4.2 Specular Reflection

As described in Section 3, the observed color of a pure specular pixel corresponds
to the illumination color. Therefore, we utilize the pixel’s hue value to determine
the illumination direction that causes the specular peak. As shown in the left-
hand panel of Fig. 2, we define the illumination direction L at pixel u using two
angles: slant θ and tilt φ, where θ is the opening angle of the cone of the ring
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light source. To compute tilt, we assume that our coordinate system is aligned
with the HSV space, and use the hue value of u in HSV space to determine φ.

With the estimated illumination direction, we compute the surface normal
using the half angle between the illumination and viewer direction. However,
with the assumption of an idealized reflection direction, we miss off-specular re-
flections here. Therefore, we utilize the hue-based computations as initial shape
estimates and update further using a coordinate descent [30] optimization scheme
based on the simplified TS model [14]. According to this model, the image bright-
ness equation for a specular pixel u can be expressed as,

Ms,c =

k∑
i=1

(
1

cos θs
exp

(
− θ2h

2σ2

))∫
Pi (λ)Qc(λ)dλ (7)

where, θs, θh, and σ denote reflection angle, half-angle, and surface roughness.
It is worth noting in passing that, in this section, we assume M1 to be the

observed specular-only reflection. Our goal is to fit this observed data to Eq. (7)
using the least square minimization. We formulate our cost function in terms of
two variables, surface normal and roughness.

At the first step, our algorithm utilizes the initial hue-based estimation of
shape to estimate the surface roughness. We assume uniform surface roughness
and employ the following cost function,

σ = arg min
σ

∑
uεM1

[
M1,c −Ms,c(N , σ)

]2
(8)

We compute σ for each band separately and take the average if they are
not the same. Once it estimates the optimal value for σ, the algorithm proceeds
to the second step where the current estimate of σ is used to obtain surface
normals. The cost function for N is given as,

N = arg min
N

∑
c

[
M1,c −Ms,c(N , σ)

]2
(9)

Thus the algorithm iterates between these two steps until none of the pa-
rameters change between two successive iterations or when a maximum number
of iterations are completed.

4.3 A Unified Framework for Objects with both Diffuse and
Specular Reflection

So far, we described our approach for diffuse-only and specular-only reflections.
This section presents a unified approach that addresses surfaces with both diffuse
and specular reflections.

We model the scene radiance as a linear combination of specular and diffuse
reflectance based upon the TS reflectance model. Therefore, the image brightness
at pixel u is given by,
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MTS,c =

k∑
i=1

[
max (0, (N ·Li))

∫
ρ(λ)Pi (λ)Qc (λ) dλ

+Ks
1

cos θs
exp

(
− θ2h

2σ2

)∫
Pi (λ)Qc (λ) dλ

]
(10)

Here, the first term on the right hand side denotes diffuse reflection where
max(0, (N · Li)) accounts for attached shadow, and the latter term denotes
specular reflection with Ks as specular reflection coefficient at u.

From Eq. (10), we first show that our color correction process applies to sur-
faces with both diffuse and specular components. The image brightness equation
for M1 +M2 is given as,

M1,c +M2,c =

k∑
i=1

[
max (0, (N ·Li))

∫
ρ(λ)

(
Pi (λ) + P̄i (λ)

)
Qc(λ)dλ

+Ks
1

cos θs
exp

(
− θ2h

2σ2

)∫ (
Pi (λ) + P̄i (λ)

)
Qc(λ)dλ

]

=

k∑
i=1

[
max (0, (N ·Li))

∫
ρ(λ)Qc(λ)dλ

+Ks
1

cos θs
exp

(
− θ2h

2σ2

)∫
Qc(λ)dλ

]
(11)

As shown in Eq. (11), illumination colors are canceled for both diffuse and
specular reflection. Therefore, all pixels, except the pure specular ones, now show
only object color.

It is worth noting that the specular-only pixels become white in M1 + M2,
which is an important observation as this relates to the accuracy in estimating
object color from M1 +M2. In this context, we would like to mention that this
causes noticeable error in shape estimation at specular pixels in the color PS
method in [8], that also utilizes complementary colored illumination to estimate
object albedo. However, this does not affect our method as we deal with object
color using our color correction method.

From the brightness equation of M1 + M̄1, we see that our color correction
process is applicable to surfaces with both reflection components,

M
′

1,c = M1,c + M̄1,c =

k∑
i=1

[
max (0, (N ·Li))

∫ (
ρ (λ) + ρ̄ (λ)

)
Pi(λ)Qc(λ)dλ

+ 2Ks
1

cos θs
exp

(
− θ2h

2σ2

)∫
Pi (λ)Qc(λ)dλ

]
(12)

As the albedo term is exclusive to the diffuse part, adding M̄1 to M1, re-
moves the object color from the diffuse part, while leaving the illumination color
unchanged in the specular part.
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Fig. 3. Comparative results on 3D reconstruction for a synthetic shape. We present the
RGB-encoded normal map and depth map for the ground truth data and that yielded
by grayscale PS [1], color PS [8], our method with 4-lights and 12-lights, respectively.
The bottom row shows error maps and average per-pixel angular error measures (in
degrees) for the surface normals yielded by each of the methods under consideration
as compared to the ground truth.

Next, we pose the shape estimation problem as an iterative minimization and
fit the observed data to Eq. (10) to recover the parameters N , σ, and Ks.

Initialization For initialization, we first segment image pixels into diffuse, spec-
ular, or shadows on the assumption that either they are purely diffuse, specular,
or shadows based on the color difference between M1 and M2. Then we utilize
the approaches in Section 4.1 and 4.2 to initialize surface normals in diffuse-only
and specular-only pixels.

For shadow pixels, we employ a hue-based computation. The surface orien-
tation at a shadow pixel u is defined using two angles: slant θ and tilt φ, where
θ comes from the opening angle of the cone of the ring light source and φ is set
according to the hue of u in the HSV space.

For segmentation, we compute the Euclidean distance between the images in
the hue-saturation plane and name this the shadow-specularity confidence map.
The distance has higher values in specular and shadow pixels and lower values
in diffuse. This conforms to our observations in Section 3, where we see that the
color difference between two input images are higher in these reflections than
the diffuse. Moreover, the distribution of this distance is bimodal and, hence, we
can apply Otsu’s adaptive threshold method [31] to select Dth, a threshold on
this distance, that can be employed to segment the specular and shadow pixels
from diffuse pixels. Finally, we apply a threshold on brightness, Vth to separate
shadows from specular highlights. Since we have considered the distribution of
brightness to be Gaussian and specular pixels to occupy a minor portion of the
scene, Vth should be on the right bottom rim of the bell curve for the distribution
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Fig. 4. The left-hand panel shows input images, color corrected images, and segmen-
tation for a real-world sphere. The right-hand panel shows comparative results for 3D
reconstruction. The top row presents the RGB-encoded normal maps and the middle
row presents depth maps for the ground truth data (left) and that yielded, in turn, by
grayscale PS [1], color PS [8], our method with 4 lights, and our method with 12 lights.
The bottom row shows error maps and average per-pixel angular error (in degrees) for
the surface normals yielded by each of the methods (compared to the ground truth).

and can be computed as, Vth = mean(V )+1.5∗std(V ), where mean(·) and std(·)
denote the mean and standard deviation, respectively.

Iterative Updates The coordinate descent approach comprises of three inter-
leaved minimization steps. We write the cost functions using the TS model given
in Eq. (10). Note that Eq. (10) shows the general form of the TS model, whereas
the model we fit in assumes all ρ(λ) = 1, since our method allows for the ρ terms
in Eq. (12) to sum to unity. Also, Eq. (12) shows 2Ks when Eq. (10) only shows
Ks. In Eq. (13-15), this scalar difference is accounted for during optimization.

At the first step, the algorithm solves for surface roughness over all pixels by
using the initial estimates of shape as,

σ = arg min
σ

∑
uεM

′
1

[
M

′

1,c −MTS,c(Ks,N , σ)
]2

(13)

At the second step, with the current estimates of σ and N , it minimizes the
following cost function to obtain Ks at each pixel,

Ks = arg min
Ks

∑
c

[
M

′

1,c −MTS,c(Ks,N , σ)
]2

(14)

At the third step, it solves for N using the updated values of Ks and σ, by
minimizing the following cost function,

N = arg min
N

∑
c

[
M

′

1,c −MTS,c(Ks,N , σ)
]2

(15)

Thus once the former variables are at hand, we obtain optimal values for the
latter ones. The algorithm iterates between these three steps, until convergence.
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Fig. 5. The left-hand and right-hand panels show 3D reconstruction results for two
real world objects, a squirrel and a duck, respectively. In each panel: (a) input images,
(b) color corrected images, (c) segmentation, (d) and (e) present RGB-encoded normal
maps and depth maps delivered by our method and color PS [8], respectively.

5 Experimental Results

We now illustrate the accuracy of our method for the purposes of 3D reconstruc-
tion using synthetic and real world data. To evaluate our method, we compare
our results against ground truth data and two other PS approaches. As our
method requires only two input images, we compare our results with those ob-
tained by the methods that require a small number of images. The first of these
is the PS method in [1], for which we use four images. To obtain these images,
we turn on each of the 4 evenly distributed lights on the ring one by one.

The other of our alternatives is a closely related work, i.e., the color PS
method in [8], that uses complementary illumination for estimating surface
albedo to relax the assumption of constant object chromaticity. This method
does not work for non-Lambertian surfaces and requires (k+ 2)/3 images over k
lights. This contrasts with our method, which can be applied to non-Lambertian
objects and to any number of light sources greater than or equal to two.

In fact, the accuracy of our estimated shape increases with the number of
light sources on the ring. We illustrate this behavior in Fig. 3, where we show
results for a synthetic shape for four and twelve lights. For both k = 4 and k = 12
cases, we evenly distribute the colored lights on the ring. The human face in Fig.
3 has been rendered (shown in Fig. 2) using the reflectance model in Eq. (10)
and the albedo of a Aloe vera leaf obtained in house using a spectrometer. For
the microfacet slope values, we have used a normal distribution with a mean of
2.0 and a standard deviation of 0.01.

In the figure, we also show the RGB encoded normal map and depth map
delivered by our method and the two alternatives, i.e., the grayscale PS [1] and
the color PS [8]. We include initial and final estimates of the surface shape to
provide a better understanding of our optimization scheme. The bottom row
shows error maps and average per-pixel angular error measures (in degrees) for
the surface normals yielded by each method compared against the ground truth.
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Note that the depth map is recovered by applying the Frankott and Chellappa
integration method [32] on the surface normals yielded by each of the methods.
We can see that our surface normals are in good accordance with the shape
of the face even at initial value. Further, after optimization, improvements are
noticeable specifically in specular and shadowed regions. This is confirmed by
our error rates, which are typically less or around 3o.

For our real world imagery, we have used three non-Lambertian objects.
These are a glossy wooden sphere (Fig. 4), a squirrel figurine with a very specular
surface (Fig. 5), and a plastic duck (Fig. 5). All the objects are multicoloured
and include specular highlights and shadows.

For each object, we show input images, color corrected images, segmentation
results, and reconstructed shape. In Fig. 4, we also show the ground truth data
and provide error maps for surface normals estimated by our method and that
by two other alternative methods. Our method outperforms the alternatives,
which is evident in the qualitative results, i.e., normals maps and depth maps,
and also in quantitative error measures.

Next we present shape reconstruction results for the squirrel and the duck in
Fig. 5. As mentioned earlier, our method can take input images acquired using
any number of illuminants. However, to make our method comparable to that
in [8], in the following we only employ two input images with 4 light sources.
For each object, we compare the RGB encoded normal map and depth map
yielded by our method with that delivered by the color PS [8]. From the figures
we can see that the color PS fails to estimate the correct shape in specular and
shadowed pixels. This contrasts with our method, which delivers better surface
detail, and, in turn, more accurate shapes.

6 Conclusion

In this paper, we have presented a novel method for recovering the 3D shape
of a non-Lambertian, multicolored object by utilizing a ring light source. The
underlying theory for our method is based on the properties of complementary
colors and the brightness variations in diffuse, specular, and shadow reflections.
This allows for the computation of a pair of color corrected images which can be
used for purposes of color PS making use of an iterative optimization scheme.
As far as we know, this is the first attempt to utilize colored illuminants on a
ring to recover object shape. Moreover, our method can naturally process non-
Lambertian, multicolored surfaces with unknown reflectance properties using
only two input images. A future research direction would be to extend the theory
for deformable surfaces and uncalibrated PS.
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